Carcinogenic Nitrogen Compounds. Part LXXXIII.¹ New Condensed Acridines Derived from Benz[c]indeno[1,3-mn]-, Benz[c]indeno[1,3-k/]-, and Phenanthro[9,10,1-mna]-acridines

By P. Jacquignon • and O. Périn-Roussel, Institut de Chimie des Substances Naturelles du C.N.R.S., 91190 Gif-sur-Yvette, France

7-o-Chlorophenyl-5-methylbenz[c]acridine underwent cyclisation with sodium hydroxide in benzo[h]quinoline to give a mixture of 14-methylbenz[c]indeno[1,3-k/]- and 9-methylbenz[c]indeno[1,3-mn]-acridine, and a similar reaction with 7-o-chlorophenyl-5,9-dimethyldibenz[c,h]acridine gave 5,11-dimethyldibenz[c,h]indeno-[1,3-k/]acridine. In both cases, by-products were isolated. 2-Methylphenanthro[9,10,1-mna]acridine was obtained from 12-(2-chloro-5-methylphenyl)benz[a]acridine, but the 6-methyl isomer did not cyclise. Some methyl-substituted 14-o-chlorophenyldibenz[a,h]- and -dibenz[a,j]-acridines furnished the corresponding 1-azapyrenes.

RECENTLY, we reported the preparation of compounds containing the cyclopent[kl]acridine skeleton by treatment of 7-o-chlorophenylbenz[c]- and 7-o-chlorophenyldibenz[c,h]-acridines with sodium hydroxide in boiling benzo[h] quinoline, but found that the cyclisation of 14-o-chlorophenyldibenz[a,h] acridine (I) furnished only

benzo[h]phenanthro[9,10,1-mna] acridine (III) and not the isomeric dibenz[a,h]indeno[1,3-kl]acridine (V).² To determine the scope of this cyclisation, we have now

¹ Part LXXXII, P. Bigot, G. Saint-Ruf, and N. P. Buu-Hoï, J.C.S. Perkin I, 1972, 2573.

² N. P. Buu-Hoï, O. Périn-Roussel, P. Jacquignon, and A. Cheutin, J.C.S. Perkin I, 1972, 1263.

³ A. Lacassagne, N. P. Buu-Hoi, F. Zajdela, and F. A. Vingiello, Naturwiss., 1968, 55, 43.

synthesised a series of compounds containing the cyclopent[kl]acridine nucleus and bearing one or more methyl substituents. Furthermore, in view of the carcinogenic activity 3-5 of hydrocarbons (VI),6 (VII), and (VIII), and the fact that current biological tests indicate that some of their nitrogen analogues [(IX), (X), (XIII), and (XV)] are less sarcomagenic, this study might throw light on the influence of methyl substitution on carcinogenicity in this series.

Cyclisation of 7-o-chlorophenyl-5-methylbenz[c]acridine (XVII) (prepared by Bernthsen reaction 7 of ochlorobenzoic acid and 4-methyl-N-phenyl-1-naphthylamine) furnished the two isomeric dibenzacridines, (XIV) and (XVI), along with small amounts of a bi-(benzo[h]quinolyl). Identification of the two expected products was based on comparison of their u.v. spectra with those of the known² non-substituted analogues (XIII) and (XV), respectively.

Condensation of 4-methyl-1-naphthol with 4-methyl-1naphthylamine led easily to compound (XXIV), and

4 A. Lacassagne, N. P. Buu-Hoï, F. Zajdela, and D. Lavit-Lamy, Compt. rend., 1963, 256, 2728

⁵ M. Shear, Amer. J. Cancer, 1936, 22, 334.
⁶ N. P. Buu-Hoï, O. Périn-Roussel, and P. Jacquignon, Chem. Comm., 1968, 718; Bull. Soc. chim. France, 1969, 3566.
⁷ A. Bernthsen, Ber., 1883, 16, 767.

Bernthsen reaction of this furnished the dibenzacridine (XIX), which was cyclised with sodium hydroxide in benzo[h]quinoline to 5,11-dimethyldibenz[c,h]indeno-[1,3-h]acridine (XVIII). However, the same procedure was unsuccessful for compounds (XX) and (XXI), because the required starting material, N-1-naphthyl-4-methyl-1-naphthylamine (XXII), could not be separated from di-1-naphthylamine (XXIII).

Previously,⁸ we described the preparation of some compounds containing the naphtho[2,1,8-*def*]quinoline (1-azapyrene) nucleus, by cyclisation of several benz[a]- and dibenz[a,j]-acridines, and we now extend this method

 $(XXY) R_1^1 = Me_1 R_2^2 = H$

(XXVI) R¹=H, R²= Me

(XXII) R¹= Me, R²= H (XXIII) R¹= R²= H (XXIV) R¹= R²= Me

(XXVII)R=H (XXVIII)R=Me

to give new methyl homologues of (IX), (III), and (XXVII). For example, compound (XI) was obtained by reaction of 2-chloro-5-methylbenzoic acid and N-phenyl-2-naphthylamine via 12-(2-chloro-5-methylphenyl)benz[a]acridine (XXV), but attempts to syn-

thesise 1-methylphenanthro[9,10,1-mna]acridine (XII) were unsuccessful as the acridine (XXVI) resisted cyclisation, probably on account of steric hindrance. The dibenzacridine (II) also readily underwent cyclisation and afforded 15-methylbenz[h]phenanthra[9,10,1-mna]acridine (IV) and some identifiable by-products. Lastly, compound (XXVIII) was easily obtained via cyclisation of 14-(2-chloro-5-methylphenyl)dibenz[a,j]acridine (XXIX).

(XXXX)

All the compounds derived from the benz[c]indeno-[1,3-mn]-, benz[c]indeno[1,3-kl]-, and phenanthro[9,10,1-mna]-acridine nuclei were stable to electron impact; very little fragmentation (loss of CH_3 -) occurred, and doubly charged molecular ions were very prominent (ca. 35-40% of the base peak).

Results of carcinogenicity tests will be reported later.

EXPERIMENTAL

Mass spectra were determined with an A.E.I. MS9 apparatus at 70 eV. U.v. spectra were taken for solutions in cyclohexane with a Leres S 66 instrument. M.p.s were taken on a Maquenne block. The purity of the secondary amines and intermediary acridines was checked by g.l.c. on a Girdel 75 instrument.

Preparation of o-Chlorophenylbenzacridines by the Bernthsen Reaction (Table).—General procedure. A mixture of the secondary amine (0.05 mol; prepared according to Knoevenagel⁹), an o-chlorobenzoic acid (0.06 mol), and anhydrous zinc chloride (0.055 mol) was heated at 200—220° for 24 h and, on cooling, treated with aqueous 20% sodium hydroxide in the presence of toluene. The organic layer was washed with water, dried (Na₂SO₄), and evaporated, and the residue was distilled *in vacuo*. Yields were 35—40%.

Cyclisation of o-Chlorophenylbenzacridines.—General procedure. A mixture of the acridine (3 g), sodium hydroxide (15 g), and benzo[h]quinoline (15 g) was heated in a Kjeldahl matrass at 360° for 4 h. After cooling, the product was diluted with water and extracted with chloroform, and was purified by chromatography on a silica column [eluant cyclohexane, then benzene-cyclohexane (1:1)].

(a) Cyclisation of compound (XVII). Elution with cyclohexane, then with benzene, gave: (i) x,x'-bi(benzo[h]-quinolyl), as sublimable needles (0.08 g), m.p. 286° (from benzene-ethanol) (Found: N, $7\cdot7\%$; M^+ , 356. Calc. for C₂₆H₁₆N₂: N, $7\cdot9\%$; M, 356); (ii) some unchanged acridine (XVII) (0.1 g); (iii) 14-methylbenz[c]indeno[1,3-kl]acridine (XVI), purified via its picrate [orange-red prisms, m.p. 240-242° (from ethanol-benzene) (Found: N, $9\cdot8$. C₃₀H₁₈-N₄O₇ requires N, $10\cdot2\%$]]. The free base (XVI) crystallised as bright yellow needles (0.02 g), m.p. 256-257° (from benzene), and gave bright orange-red solutions in sulphuric ⁸ N. P. Buu-Hoï, O. Périn-Roussel, and P. Jacquignon, J.C.S. Perkin I, 1972, 234.

⁹ E. Knoevenagel, J. prakt. Chem., 1914, 89, 17.

1973

acid (Found: C, 90·9; H, 4·7; N, 4·4%; M^+ , 317. C₂₄H₁₅N requires C, 90·8; H, 4·7; N, 4·4%; M, 317); λ_{max} (cyclohexane) 226 (log ε 4·79), 241 (4·43), 252 (4·52), 270 (4·43), 295 (4·65), 302 (4·70), 335 (3·36), 350 (3·60), 370 (3·96), 392 (4·16), 397 (4·15), 404 (4·20), 415 (4·06), 430 (4·20), and 440 nm (3·76); and (iv) 9-methylbenz[c]indeno[1,3-mn]acridine (XIV), purified via its picrate [bright red prisms, m.p. 234—235° (Found: N, 10·3%)]. Basification afforded the acridine (XIV) (0·09 g) as yellow prisms, m.p. 175—176° (from benzene), which gave orange-red solutions in sulphuric acid (Found: C, 90·2; H, 4·7; N, 4·4%; M⁺, 317); λ_{max} , 219 (log ε 4·55), 228 (4·46), 239 (4·56), 242 (4·55), 258

317. $C_{24}H_{15}N$ requires C, 90.8; H, 4.8; N, 4.4%; M, 317); picrate, orange prisms, m.p. 276° (decomp. >255°) (from nitrobenzene) (Found: N, 10.3. $C_{30}H_{18}N_4O_7$ requires N, 10.2%).

(d) Cyclisation of Compound (XXIX). This cyclisation gave 2-methylbenzo[j]phenanthro[9,10,1-mna]acridine (XXVIII) as yellow needles, m.p. 226—227° (resolidifies at ~120°) (from benzene), giving orange solutions in sulphuric acid (Found: C, 91·4; H, 4·9; N, 4·0. $C_{28}H_{17}N$ requires C, 91·5; H, 4·6; N, 3·8%); picrate, orange prisms, m.p. 230—231° (from chlorobenzene) (Found: N, 9·2. $C_{34}H_{20}$ -N₄O₇ requires N, 9·4%).

o-Chlorophenylbenzacridines a

· · · · · · · · · · · · · · · · · · ·	, emeropia	sphenyibenzuerhuntes			Analysis					
	B.p. (° C)			Found (%)			Required (%)			
Compound	(mmHg)	M.p. (° C)	Formula	С	н	Ν	С	н	N	
7-(o-Chlorophenyl)-5-methylbenz[c]acridine (XVII)	$320 - 325 \\ (18)$	190	$\mathrm{C_{24}H_{16}ClN}$	81.6	4 ∙8	4 ·2	81.5	4 ∙5	3.9	
Picrate		215 (decomp. > 195)	$\mathrm{C_{30}H_{19}ClN_4O_7}$			9.6			9.6	
7-(o-Chlorophenyl)-5,9-dimethyldibenz[c,k]acridine (XIX) ^b	330—340 (15)	320 (subl. > 285)	C ₂₉ H ₂₀ ClN	83.6	4 ∙9	3.3	83.3	4 ∙8	3.3	
12-(2-Chloro-5-methylphenyl)benz[a]acridine (XXV) °	315—320 (20)	144	$\mathrm{C_{24}H_{16}ClN}$	80.9	4.6	4 ·2	81.5	4 ·5	3.9	
Picrate		233 (decomp. > 206)	$\mathrm{C_{30}H_{19}ClN_4O_7}$			9.6			9∙6	
14-(2-Chloro-5-methylphenyl)dibenz[a,j]acridine (XXIX) ⁴	$\begin{array}{c} 340 345 \\ \mathbf{(15)} \end{array}$	254	$\mathrm{C_{28}H_{18}ClN}$	82.9	4 ∙5	3.5	83 ·2	4 ·5	3∙4	
Picrate	. ,	266 (decomp. > 235)	$\mathrm{C_{34}H_{21}ClN_4O_7}$			9·0			8.8	
14-(o -Chlorophenyl)-12-methyldibenz[a,h]acridine (II) •	320 - 330 (15)	176	C ₂₈ H ₁₈ ClN	83.6	4 ∙5	3.4	83·2	4 ∙5	3∙4	
Picrate		$\frac{228}{(\mathrm{decomp.}>205)}$	$\mathrm{C_{34}H_{21}ClN_4O_7}$			$9 \cdot 2$			8.8	

Recrystallised as pale yellow needles (from benzene); picrates crystallised as orange prisms.
Obtained from 4,4'-dimethyl-di-1-naphthylamine[(XXIV); prepared by condensation of 4-hydroxy-1-methylnaphthalene and 4-amino-1-methylnaphthalene¹⁰].
From 2-chloro-5-methylbenzoic acid; crystallised from methanol.
From 2-chloro-5-methylbenzoic acid; purified by chromatography (silica) to separate dibenz[a,j]acridine also formed.
Crystallised from ethanol; the secondary amine was obtained by condensation of 2-naphthol and 4-methyl-1-naphthylamine, and had b.p. 295-300° at 17 mmHg, m.p. 125-126°.

 $(4\cdot65)$, 270 $(4\cdot42)$, 278 $(4\cdot50)$, 287 $(4\cdot42)$, 295 $(4\cdot50)$, 300 $(4\cdot43)$, 308 $(4\cdot45)$, 326 $(3\cdot70)$, 330 $(3\cdot70)$, 336 $(3\cdot50)$, 390 $(4\cdot18)$, 402 $(4\cdot14)$, 415 $(4\cdot18)$, and 440 nm $(3\cdot10)$.

(b) Cyclisation of compound (XIX). Chromatography [silica; cyclohexane-benzene (4:1) as eluant] furnished: (i) 5,9-dimethyldibenz[c,h]acridine (0.5 g), m/e 307, m.p. and mixed m.p. with an authentic sample ¹¹ 285° (from benzene); and (ii) 5,11-dimethyldibenz[c,h]indeno[1,3-kl]acridine (XVIII), bright yellow needles (0.03 g), m.p. 299° (resolidifies at 284°) (from benzene), giving bright red solutions in sulphuric acid (Found: C, 91.2; H, 5.3; N, 3.4%; M^+ , 381. C₂₉H₁₉N requires C, 91.3; H, 5.0; N, 3.6%; M, 381); picrate, orange-red prisms, m.p. 218° (decomp. >190°).

(c) Cyclisation of compound (XXV). Chromatography gave: (i) x,x'-bi(benzo[h]quinolyl) (0.02 g); (ii) unchanged acridine (XXV) (0.05 g); and (iii) 2-methylphenanthro[9,10,1-mna]acridine (XI), golden needles (0.1 g), m.p. 111–112° (from petroleum) (Found: C, 90.4; H, 5.1; N, 4.3%; M^+ ,

¹⁰ J. M. Bonnier and J. Rinaudo, Bull. Soc. chim. France, 1971, 2100.

(e) Cyclisation of compound (II). Chromatography afforded: (i) x,x'-bi(benzo[h]quinolyl) (0.05 g); (ii) 12methyl-14-phenyldibenz[a,h]acridine (0.08 g), m.p. 224—225° (from cyclohexane) (Found: C, 90.2; H, 5.0; N, 4.4%; M^+ , 369. $C_{28}H_{19}N$ requires C, 90.9; H, 5.1; N, 3.8%; M, 369); (iii) the starting acridine (II) (0.01 g); and (iv) 15methylbenzo[h]phenanthro[9,10,1-mna]acridine (IV), pale yellow needles (0.2 g), m.p. 210—211° (from benzene), giving orange-red solutions in sulphuric acid (Found: C, 91.7; H, 4.7; N, 3.6. $C_{28}H_{17}N$ requires C, 91.5; H, 4.6; N, 3.8%); picrate, orange prisms, m.p. 252° (decomp. >240°) (from benzene) (Found: N, 9.5. $C_{34}H_{20}N_4O_7$ requires N, 9.4%).

This work was supported by the Institut National de la Santé et de la Recherche Médicale and by the Régie Nationale des Tabacs (S.E.I.T.A.).

[3/483 Received, 5th March, 1973]

¹¹ J. André, P. Jacquignon, N. P. Buu-Hoï, and F. Périn, J. Heterocyclic Chem., 1971, 8, 529.