Carcinogenic Nitrogen Compounds. Part LXXXIII. ${ }^{1}$ New Condensed Acridines Derived from Benz[c]indeno[1,3-mn]-, Benz[c]indeno[1,3-k/]-, and Phenanthro[9,10,1-mna]-acridines

By P. Jacquignon ${ }^{\bullet}$ and O. Périn-Roussel, Institut de Chimie des Substances Naturelles du C.N.R.S., 91190 Gif-sur-Yvette, France

7-o-Chlorophenyl-5-methylbenz[c]acridine underwent cyclisation with sodium hydroxide in benzo[h]quinoline to give a mixture of 14 -methylbenz[c]indeno[1,3- $\mathrm{k} /]$ - and 9 -methylbenz[c]indeno[1,3-mn]-acridine, and a similar reaction with 7 -o-chlorophenyl-5,9-dimethyldibenz[c, h]acridine gave 5,11 -dimethyldibenz[c, h]indeno-[1,3-k/]acridine. In both cases, by-products were isolated. 2-Methylphenanthro [9,10,1-mna]acridine was obtained from 12-(2-chloro-5-methylphenyl)benz[a]acridine, but the 6 -methyl isomer did not cyclise. Some methyl-substituted 14-o-chlorophenyldibenz[a,h]- and -dibenz[a.j]-acridines furnished the corresponding 1-azapyrenes.

Recently, we reported the preparation of compounds containing the cyclopent $[k l]$ acridine skeleton by treatment of 7 -o-chlorophenylbenz[c]- and $7-0$-chlorophenyldibenz $[c, h]$-acridines with sodium hydroxide in boiling benzo $[h]$ quinoline, but found that the cyclisation of 14-o-chlorophenyldibenz[a,h]acridine (I) furnished only

(V)
(VI)

(VI)

(VIII)
benzo $[h]$ phenanthro $[9,10,1-m n a]$ acridine (III) and not the isomeric dibenz $[a, h]$ indeno $[1,3-k l]$ acridine (V). ${ }^{2}$ To determine the scope of this cyclisation, we have now

[^0] J.C.S. Perkin I, 1972, 2573.
${ }^{2}$ N. P. Buu-Hoï, O. Périn-Roussel, P. Jacquignon, and A. Cheutin, J.C.S. Perkin I, 1972, 1263.
${ }^{3}$ A. Lacassagne, N. P. Buu-Hoï, F. Zajdela, and F. A. Vingiello, Naturwiss., 1968, 55, 43.
synthesised a series of compounds containing the cyclopent $[k l]$ acridine nucleus and bearing one or more methyl substituents. Furthermore, in view of the carcinogenic activity ${ }^{3-5}$ of hydrocarbons (VI), ${ }^{6}$ (VII), and (VIII), and the fact that current biological tests indicate that some of their nitrogen analogues [(IX), (X), (XIII), and (XV)] are less sarcomagenic, this study might throw light on the influence of methyl substitution on carcinogenicity in this series.

(IX) $R^{1}=R^{2}=R^{3}=H$
(X) $R^{1}=R^{2}=\mathrm{H}, R^{3} \mathrm{Me}$
(XI) $R^{1}=M e, R^{2}=R^{3}=H$
(XII) $R^{1}=R^{3}=H, R^{2}=M e$

(XV) $R=H$
(XVI) $\mathrm{R}=\mathrm{Me}$

Cyclisation of 7-o-chlorophenyl-5-methylbenz[c]acridine (XVII) (prepared by Bernthsen reaction ${ }^{7}$ of 0 chlorobenzoic acid and 4-methyl- N-phenyl-1-naphthylamine) furnished the two isomeric dibenzacridines, (XIV) and (XVI), along with small amounts of a bi(benzo[h]quinolyl). Identification of the two expected products was based on comparison of their u.v. spectra with those of the known ${ }^{2}$ non-substituted analogues (XIII) and (XV), respectively.

Condensation of 4-methyl-1-naphthol with 4-methyl-1naphthylamine led easily to compound (XXIV), and

4 A. Lacassagne, N. P. Buu-Hoï, F. Zajdela, and D. LavitLamy, Compt. rend., 1963, 256, 2728.

5 M. Shear, Amer. J. Cancer, 1936, 28, 334.
${ }^{6}$ N. P. Buu-Hoï, O. Périn-Roussel, and P. Jacquignon, Chem. Comm., 1968, 718; Bull. Soc. chim. France, 1969, 3566.

7 A. Bernthsen, Ber., 1883, 16, 767.

Bernthsen reaction of this furnished the dibenzacridine (XIX), which was cyclised with sodium hydroxide in benzo $[h]$ quinoline to 5,11 -dimethyldibenz $[c, h]$ indeno-[1,3-kl]acridine (XVIII). However, the same procedure was unsuccessful for compounds (XX) and (XXI), because the required starting material, N-1-naphthyl-4-methyl-1-naphthylamine (XXII), could not be separated from di-l-naphthylamine (XXIII).

(XVII)

(XVIII) $R^{1}=R^{2}=\mathrm{Me}$ (XX) $R^{1}=H, R^{2}=M e$ $(X X I) R^{1}=M e, R^{2}=H$

(XIX)

Previously, ${ }^{8}$ we described the preparation of some compounds containing the naphtho[2,1,8-def]quinoline (1-azapyrene) nucleus, by cyclisation of several benz[a]and dibenz $[a, j]$-acridines, and we now extend this method

(XXII) $R_{1}^{1}=\mathrm{Me}, R^{2}=H$
(XXII) $R^{1}=R_{2}^{2}=H$
(XXIV) $R^{1}=R^{2}=M e$

$(X X X) R^{1}=M e, R^{2}=H$
$(X X X I) R^{1}=H, \quad R^{2}=M e$

(XXYII)R=H
(XXVIII) $\mathrm{R}=\mathrm{Me}$
to give new methyl homologues of (IX), (III), and (XXVII). For example, compound (XI) was obtained by reaction of 2 -chloro- 5 -methylbenzoic acid and N -phenyl-2-naphthylamine via 12-(2-chloro-5-methylphenyl)benz[a]acridine (XXV), but attempts to syn-
thesise 1-methylphenanthro[9,10,1-mna]acridine (XII) were unsuccessful as the acridine (XXVI) resisted cyclisation, probably on account of steric hindrance. The dibenzacridine (II) also readily underwent cyclisation and afforded 15-methylbenz[h]phenanthra[9,10,1-mna]acridine (IV) and some identifiable by-products. Lastly, compound (XXVIII) was easily obtained via cyclisation of 14-(2-chloro-5-methylphenyl)dibenz[a,j]acridine (XXIX).

(XXIX)

All the compounds derived from the benz[c]indeno-$[1,3-m n]-$, benz $[c]$ indeno $[1,3-k l]$-, and phenanthro $[9,10,1-$ $m n a]$-acridine nuclei were stable to electron impact; very little fragmentation (loss of $\mathrm{CH}_{3}{ }^{\circ}$) occurred, and doubly charged molecular ions were very prominent (ca. $35-40 \%$ of the base peak).

Results of carcinogenicity tests will be reported later.

EXPERIMENTAL

Mass spectra were determined with an A.E.I. MS9 apparatus at 70 eV . U.v. spectra were taken for solutions in cyclohexane with a Leres S 66 instrument. M.p.s were taken on a Maquenne block. The purity of the secondary amines and intermediary acridines was checked by g.l.c. on a Girdel 75 instrument.

Preparation of o-Chlorophenylbenzacridines by the Bernthsen Reaction (Table).-General procedure. A mixture of the secondary amine (0.05 mol ; prepared according to Knoevenagel ${ }^{9}$), an o-chlorobenzoic acid (0.06 mol), and anhydrous zinc chloride (0.055 mol) was heated at $200-220^{\circ}$ for 24 h and, on cooling, treated with aqueous 20% sodium hydroxide in the presence of toluene. The organic layer was washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated, and the residue was distilled in vacuo. Yields were $35-40 \%$.

Cyclisation of o-Chlorophenylbenzacridines.-General procedure. A mixture of the acridine (3 g), sodium hydroxide (15 g), and benzo $[h]$ quinoline (15 g) was heated in a Kjeldahl matrass at 360° for 4 h . After cooling, the product was diluted with water and extracted with chloroform, and was purified by chromatography on a silica column [eluant cyclohexane, then benzene-cyclohexane ($1: 1$)].
(a) Cyclisation of compound (XVII). Elution with cyclohexane, then with benzene, gave: (i) $\mathrm{x}, \mathrm{x}^{\prime}$-bi(benzo $[h]-$ quinolyl), as sublimable needles (0.08 g), m.p. 286° (from benzene-ethanol) (Found: N, 7.7%; $M^{+}, 356$. Calc. for $\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{~N}_{2}: \mathrm{N}, 7 \cdot 9 \% ; M, 356$); (ii) some unchanged acridine (XVII) $(0 \cdot 1 \mathrm{~g})$; (iii) 14 -methylbenz[c]indeno $[1,3-\mathrm{kl}]$ acridine (XVI), purified via its picrate [orange-red prisms, m.p. $240-242^{\circ}$ (from ethanol-benzene) (Found: N, 9.8. $\quad \mathrm{C}_{30} \mathrm{H}_{18^{-}}$ $\mathrm{N}_{4} \mathrm{O}_{7}$ requires $\mathrm{N}, \mathbf{1 0 \cdot 2} \%$)]. The free base (XVI) crystallised as bright yellow needles (0.02 g), m.p. 256- 257° (from benzene), and gave bright orange-red solutions in sulphuric
${ }^{8}$ N. P. Buu-Hoï, O. Périn-Roussel, and P. Jacquignon, J.C.S. Perkin I, 1972, 234.
${ }^{9}$ E. Knoevenagel, J. prakt. Chem., 1914, 89, 17.
acid (Found: C, $90 \cdot 9 ; \mathrm{H}, 4 \cdot 7 ; \mathrm{N}, 4 \cdot 4 \% ; M^{+}, 317 . \quad \mathrm{C}_{24} \mathrm{H}_{15} \mathrm{~N}$ requires $\mathrm{C}, 90.8 ; \mathrm{H}, 4.7 ; \mathrm{N}, 4.4 \% ; M, 317$) ; $\lambda_{\max }$ (cyclohexane) 226 (log $\varepsilon 4 \cdot 79$), 241 (4.43), 252 (4.52), 270 (4.43), $295(4 \cdot 65), 302(4 \cdot 70), 335(3 \cdot 36), 350(3 \cdot 60), 370(3 \cdot 96), 392$ (4•16), 397 (4•15), 404 ($4 \cdot 20$), 415 ($4 \cdot 06$), 430 (4•20), and 440 $\mathrm{nm}(3 \cdot 76)$; and (iv) 9-methylbenz[c]indeno[1,3-mn]acridine (XIV), purified via its picrate [bright red prisms, m.p. 234$235^{\circ}$ (Found: N, 10.3%)]. Basification afforded the acridine (XIV) (0.09 g) as yellow prisms, m.p. $175-176^{\circ}$ (from benzene), which gave orange-red solutions in sulphuric acid (Found: C, $90.2 ; \mathrm{H}, 4.7$; N, $4.4 \% ; M^{+}, 317$); $\lambda_{\text {max. }} 219(\log \varepsilon 4 \cdot 55), 228(4 \cdot 46), 239(4 \cdot 56), 242(4 \cdot 55), 258$
317. $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{~N}$ requires $\mathrm{C}, 90 \cdot 8 ; \mathrm{H}, 4 \cdot 8 ; \mathrm{N}, 4.4 \% ; M, 317$); picrate, orange prisms, m.p. 276° (decomp. $>255^{\circ}$) (from nitrobenzene) (Found: N, 10.3. $\mathrm{C}_{30} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{7}$ requires N , $10 \cdot 2 \%$).
(d) Cyclisation of Compound (XXIX). This cyclisation gave 2 -methylbenzo[j]phenanthro[9,10,1-mna]acridine (XXVIII) as yellow needles, m.p. 226- 227° (resolidifies at $\sim 120^{\circ}$) (from benzene), giving orange solutions in sulphuric acid (Found: C, $91 \cdot 4 ; \mathrm{H}, 4 \cdot 9 ; \mathrm{N}, 4 \cdot 0 . \quad \mathrm{C}_{28} \mathrm{H}_{17} \mathrm{~N}$ requires C , $91.5 ; \mathrm{H}, 4.6 ; \mathrm{N}, 3.8 \%$) picrate, orange prisms, m.p. $230-231^{\circ}$ (from chlorobenzene) (Found: N, 9.2. $\mathrm{C}_{34} \mathrm{H}_{20^{-}}$ $\mathrm{N}_{4} \mathrm{O}_{7}$ requires $\mathrm{N}, 9 \cdot 4 \%$)

o-Chlorophenylbenzacridines ${ }^{\boldsymbol{a}}$

						Ana			
	B.p.				nd		Requ	ired	
Compound	(mmHg)	M.p. $\left({ }^{\circ} \mathrm{C}\right)$	Formula	C	H	N	C	H	-
7-(o-Chlorophenyl)-5-methylbenz[c]acridine (XVII)	$\begin{gathered} 320-325 \\ (18) \end{gathered}$	190	$\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{ClN}$	$81 \cdot 6$	4.8	$4 \cdot 2$	81.5	4.5	$3 \cdot 9$
Picrate		$\stackrel{215}{(\text { decomp. }>} \text { 195) }$	$\mathrm{C}_{30} \mathrm{H}_{19} \mathrm{ClN}_{4} \mathrm{O}_{7}$			9.6			-6
7-(o-Chlorophenyl)-5,9-dimethyldibenz[$[, h]$ acridine (XIX) ${ }^{b}$	$\underset{(15)}{330-340}$	$\begin{gathered} 320 \\ (\text { subl. }>285) \end{gathered}$	$\mathrm{C}_{29} \mathrm{H}_{20} \mathrm{ClN}$	$83 \cdot 6$	$4 \cdot 9$	$3 \cdot 3$	$83 \cdot 3$	4.8	$3 \cdot 3$
12-(2-Chloro-5-methylphenyl)benz[a]acridine (XXV)	$\underset{(20)}{315-320}$	144	$\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{ClN}$	$80 \cdot 9$	$4 \cdot 6$	$4 \cdot 2$	81.5	4.5	$3 \cdot 9$
Picrate		$\begin{gathered} 233 \\ (\text { decomp. }>206) \end{gathered}$	$\mathrm{C}_{30} \mathrm{H}_{19} \mathrm{ClN}_{4} \mathrm{O}_{7}$			$9 \cdot 6$			9.6
14-(2-Chloro-5-methylphenyl)dibenz[a,j]acridine (XXIX) $^{\boldsymbol{d}}$	$\underset{(15)}{340-345}$	254	$\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{ClN}$	$82 \cdot 9$	$4 \cdot 5$	3.5	$83 \cdot 2$	4.5	$3 \cdot 4$
Picrate		$\begin{gathered} 266 \\ \text { (decomp. }>235 \text {) } \end{gathered}$	$\mathrm{C}_{34} \mathrm{H}_{21} \mathrm{ClN}_{4} \mathrm{O}_{7}$			9.0			8.8
14-(o-Chlorophenyl)-12-methyldibenz[a,h]acridine (II) ${ }^{\circ}$	$\underset{(15)}{320-330}$	176	$\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{ClN}$	83.6	4.5	3.4	83.2	4.5	$3 \cdot 4$
Picrate		$\stackrel{228}{\text { (decomp. }>205 \text {) }}$	$\mathrm{C}_{34} \mathrm{H}_{21} \mathrm{ClN}_{4} \mathrm{O}_{7}$			9.2			$8 \cdot 8$

${ }^{a}$ Recrystallised as pale yellow needles (from benzene); picrates crystallised as orange prisms. ${ }^{b}$ Obtained from 4,4'-dimethyl-di-1naphthylamine[(XXIV); prepared by condensation of 4-hydroxy-1-methylnaphthalene and 4-amino-1-methylnaphthalene ${ }^{10}$. ${ }^{6}$ From 2-chloro-5-methylbenzoic acid; crystallised from methanol. ${ }^{d}$ From 2-chloro-5-methylbenzoic acid; purified by chromatography (silica) to separate dibenz[a,j]acridine also formed. © Crystallised from ethanol; the secondary amine was obtained by condensation of 2-naphthol and 4-methyl-1-naphthylamine, and had b.p. $295-300^{\circ}$ at $17 \mathrm{mmHg}, \mathrm{m}$. p. $125-126^{\circ}$.
(4.65), $270(4 \cdot 42), 278(4 \cdot 50), 287(4 \cdot 42), 295(4 \cdot 50), 300$ ($4 \cdot 43$), 308 ($4 \cdot 45$), $326(3 \cdot 70), 330(3 \cdot 70), 336(3 \cdot 50), 390$ (4•18), $402(4 \cdot 14), 415(4 \cdot 18)$, and $440 \mathrm{~nm}(3 \cdot 10)$.
(b) Cyclisation of compound (XIX). Chromatography [silica; cyclohexane-benzene ($4: 1$) as eluant] furnished: (i) 5,9-dimethyldibenz[c,h]acridine (0.5 g), $m / e 307, \mathrm{~m} . \mathrm{p}$. and mixed m.p. with an authentic sample ${ }^{11} 285^{\circ}$ (from benzene); and (ii) 5,11-dimethyldibenz $[\mathrm{c}, \mathrm{h}]$ indeno $[1,3-\mathrm{kl}]$ acridine (XVIII), bright yellow needles (0.03 g), m.p. 299° (resolidifies at 284°) (from benzene), giving bright red solutions in sulphuric acid (Found: C, $91 \cdot 2 ; \mathrm{H}, 5 \cdot 3 ; \mathrm{N}, 3 \cdot 4 \% ; M^{+}, 381$. $\mathrm{C}_{29} \mathrm{H}_{19} \mathrm{~N}$ requires C, $91 \cdot 3 ; \mathrm{H}, 5 \cdot 0 ; \mathrm{N}, 3.6 \% ; M, 381$); picrate, orange-red prisms, m.p. 218° (decomp. $>190^{\circ}$).
(c) Cyclisation of compound (XXV). Chromatography gave: (i) $\mathrm{x}, \mathrm{x}^{\prime}-\mathrm{bi}(\mathrm{benzo}[h]$ quinolyl) (0.02 g); (ii) unchanged acridine (XXV) (0.05 g) ; and (iii) 2-methylphenanthro [9,10,1mna]acridine (XI), golden needles (0.1 g), m.p. $11 \mathrm{I}-112^{\circ}$ (from petroleum) (Found: C, $90 \cdot 4 ; \mathrm{H}, 5 \cdot 1 ; \mathrm{N}, 4 \cdot 3 \% ; M^{+}$,
${ }^{10}$ J. M. Bonnier and J. Rinaudo, Bull. Soc. chim. France, 1971, 2100.
(e) Cyclisation of compound (II). Chromatography afforded: (i) $\mathrm{x}, \mathrm{x}^{\prime}$-bi(benzo[h]quinolyl) (0.05 g); (ii) 12 -methyl-14-phenyldibenz[a, h]acridine (0.08 g), m.p. 224-225 ${ }^{\circ}$ (from cyclohexane) (Found: C, $90 \cdot 2 ; \mathrm{H}, 5 \cdot 0 ; \mathrm{N}, 4 \cdot 4 \%$; $M^{+}, 369 . \quad \mathrm{C}_{28} \mathrm{H}_{19} \mathrm{~N}$ requires $\mathrm{C}, 90 \cdot 9 ; \mathrm{H}, 5 \cdot 1 ; \mathrm{N}, 3 \cdot 8 \% ; M$, 369) ; (iii) the starting acridine (II) (0.01 g); and (iv) 15 -methylbenzo[h]phenanthro[9,10,1-mna]acridine (IV), pale yellow needles $(0.2 \mathrm{~g})$, m.p. 210- 211° (from benzene), giving orange-red solutions in sulphuric acid (Found: C, 91.7 ; H, $4 \cdot 7 ; \mathrm{N}, 3.6 . \quad \mathrm{C}_{28} \mathrm{H}_{17} \mathrm{~N}$ requires $\left.\mathrm{C}, 91.5 ; \mathrm{H}, 4 \cdot 6 ; \mathrm{N}, 3.8 \%\right)$; picrate, orange prisms, m.p. 252° (decomp. $>240^{\circ}$) (from benzene) (Found: N, 9•5. $\quad \mathrm{C}_{34} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{7}$ requires $\mathrm{N}, 9 \cdot 4 \%$).

This work was supported by the Institut National de la Santé et de la Recherche Médicale and by the Régie Nationale des Tabacs (S.E.I.T.A.).
[3/483 Received, 5th March, 1973]
${ }^{11}$ J. André, P. Jacquignon, N. P. Buu-Hoï, and F. Périn, J. Heterocyclic Chem., 1971, 8, 529.

[^0]: ${ }^{1}$ Part LXXXII, P. Bigot, G. Saint-Ruf, and N. P. Buu-Hoï,

